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Estimation Of Exponential Mean Life In Comp]lete And
Failure Censored Samples With Prior Information

Sharad Saxena*

ABSTRACT

A family of estimators for exponential mean life is proposed when a guessed value
and a guessed interval of mean life are available in addition to sample information. Shrinkage
framework has been used to improve the uniformly minimum variance unbiased esumator
(UMVUE). Conjugate gamma prior is considered to derive a Bayes estimator and this
estimate has been employed in shrinkage estimation to resolve the choice of the natural origin
towards which the UGMVUE to be shrunken. The suggested family of estimators has been
compared with the classical estimators in terms of percent relative efficiency. Subsequently,
applicability of the proposed family of estimators. has been tested by a life-testing examgle.

Key Words & Phrases: Exponential distribution, Prior information, Shrinkage estimation,
Bayesian Estimation, Bias, Mean squared error.

1. INTRODUCTION

The exponential distribution is a very commonly used distribution in rehability
engineering. Due to its simplicity, it has been widely employed even in cases to which it does
not apply. Exponential distribution plays an important part in life testing problems too. For a
situation where the failure rate appears to be more or less constant, the exponential
distribution would be an adequate choice. Davis (1952) examined different types of data and
the exponential distribution appears to fit most of the situations quite well. The probability
density function of one-parameter exponential distribution is given by:

-X

f(x;c9)=é- exp(—e') ; X 2 0, 8> 0, (L.1)

where 6 is the average life of the item and it acts as a scale parameter.

Suppose n items are subjected to test and the test is terminated after all the items have
failed. The samples thus obtained are called ‘failure-complete’ samples. However, there are
several situations where this is neither possible nor desirable. Note thatr life-testing
experiments are usually destructive in nature that the items are destroyed at the end of the
experiment and cannot be used again. This limits the number of items we can test. We may
put n items on test and terminate the experiment when a pre-assigned number of items, say r
(< n) have failed. The samples obtained from such an experiment are called ‘failure-censored’
samples. Failure-censored sampling is almost mandatory in dealing with high cost
sophisticated items such as colour television tubes. In this case the data consist of the life
times of r items that failed (say x() <x(3) <..<Xx() and the fact that (n - r) items have

survived beyond X(r) - Here, the number of items that failed, #, is fixed while X(rys the time at
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which the experiment is terminated, is a random variable. The classical estimators of 8 1n
complete and censored sampling are summarized in Table 1.1 with their characteristics.

Table 1.1. Classical Estimators of Mean Life 8

Typeof  Typeof . Absolute Relative
Sample  Estimator Estimator Bias Mean lSquared Error
oo UEDIZSE 0,=% varld, )=(6%/n)
omplete = ~ ~ ;
MMSE 6, =n%/(n+1) ARB@,)=1/(n+1) MSE@,)=0/(n+1)
Unbiased 5' = (Sr /r) - Var(@ ) 8- / r
Censored

MMSE g, =[s,/(r+1)] ARB@,)=1/(-+1) MSE®,)=02/(+1)

where, x——}:x and S, [Zx,.+(n—r)x,]
i=1

i=]

It 1s apparent that the above estimators take into account the sample information
alone. However, Davis and Armnold (1970) have shown that, in terms of squared error risk, the
usual unbiased estimator should not necessarily be considered. They have exhibited that one
can mmprove upon the unique best mean squared error estimator. It is normally believed that
due to considerable handling of life-times of an item in the past, one may have some prior
information about the scale parameter & in the form of either a point value, an interval or in
the form of a prior distribution.

Bayesian and Shrinkage estimation techniques are the well-known estimation
procedures that use prior information. Kotz et. al. (1988) defined shrinkage (shrunken)
estimator as an estimator obtained through modification of the usual (maxumim likelihood,
minimum variance unbiased, least squares etc.) estimator in order to optimize some desirable
criterion function like mean squared error (MSE), quadratic risk, bias etc. If 8, is an

educated guess or an initial estimate of the value of the parameter 8 then in such cases it may
be reasonable to take the usual estimator for &, say 67(,, and move it closer to (or shrink it
toward) this so-called natural origin 6, by multiplying the difference (§U - 90) by a
shrinking factor £ and addingitto §,, i.e.,

b =k(B, -8,)+8, = k8, +(1-K)6,, 0<k<1 (cf., Thompson (1968 a)

The resulting estimator, though perhaps biased, has a smaller MSE than 0~U for 6 in
some interval around 8, (the so-called effective interval). Sometimes instead of guessing the
value g, of § it may be more reasonable to shrink towards an interval, i.e., guess an interval

(01,92) that we believe contains &; cf. Lemmer (1981) and Thompson (1968 b). A lot many
shrinkage estirnators have been reported by various authors including Pandey and Singh
(1983), Pandey and Srivastava (1985), Jani (1991), Singh et. al. (1993), Singh and
Raghuvanshi (1996), Upadhyaya et. al. (1997), Singh et. al. (2001) and Singh and Saxena
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(2001) for exponential mean life. In all the shrinkage estimators suggested so far, the usual
estimator 8, is shrunken towards a guessed value , or an interval (6,,6,).

This paper considers a situation where life tester possesses prior information in the
form of a guessed value and a guessed interval both. The situation dealt with the case when
life tester does not have much confidence to express his belief just by one value as a prior
estimate of the parameter i.e., the point guessed value, however he is in a position to express
his belief strongly in the form of a certain range i.e., the guessed interval. Apparently it is
assumed that the point guessed value falls within the guessed interval, i.e., 8, <8, <8, .1It1s
obvious to question that what will be the natural origin if guessed value and guessed interval
both to be incorporated in the shrinkage estimation procedure? Can we really shrink
simultaneously towards a point and an interval? An appropriate approach may be to shrink
towards a point, say 8, in which the knowledge available in the form of 6y, 6, and 8, must

be integrated. This problem can be solved in Bayesian framework.

2. BAYESIAN APPROACH TO DETERMINE THE NATURAL ORIGIN

Consider the model (1.1) as
flxin)=n exp(-nx) ;x20, n>0

where n=(1/ 8). The standard argument given by Raifa and Schlaifer (1961) leads to select
a conjugate prior

a’n? ! exp(-an)
g(ﬂ)" —,a>0, >0, 0<7pp<
‘ g

which 1s a Gamma (o [) distribution with mean and variance given by

E(n)=(B/a)= u (say) and Var(n)= (ﬂ/a ) (/) respectively. Under the assumption of
prior density g( ), the posterior distribution of 7 can be obtained by using the Baye’s
theorem as ‘

.\ " |
. p+n-1 . s a O, 0’ 0
g (nlx) F(,B+n (a+2r ) /i exp{ (a+§x, ]} a>0, g> <n<ow™

i=1

which is a Gamma(a+¥x;, B +n) distribution involves two hyperparameters to be

assessed namely, o and . A very crude possible way of selecting these parameters involves:
let, 7, = (1/9 j) ; J=0;1,2. The value of # and a can be obtained by simultaneously solving

the two equations:

#+§1\/§=’71 and #‘52\/5"—"772' ;if 6, <Bpig
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or u—-<& \/—‘g\= m and u+¢, \/% =1, ;if 0y>6,.,
6(n, - 6\n, —
where &, =—-(-7ﬁ——77°—2 and ¢, :Mm the weights based on the area property of
: =1 =1

the standard normal distribution, 8,,, = (6, + 6, )/2. Once one gets the values of u and «, it
1s trivial to calculate S. Thus, the numerical value of posterior mean of 7 is given by

Ng = p ;n and finally, a Bayesian estimate of 6 is given by 8, =(1/7;). In the next
a+yx; :
section, this Bayes estimate has been used as a natural origin towards which the UMVUE has

been shrunken by optimizing the mean squared error.

3. SHRINKAGE ESTIMATION WITH COMPLETE SAMPLES

Jani (1991) suggested a class of shrinkage estimators when a prior point estimate 6,
of 8 is available viz.,

~ 9.\
6., =0°{1+W(}0—) }

Motivated by Jani (1991) we evoked a family of estimators 5(1?«1) for 4 defined in

(3.1). The idea behind this type of estimator is that one’s knowledge of 6 can best be
expressed by mean of a prior distribution of # around the values 8,,6, and 8, rather than a

one-point distribution in 8, . Furthermore, an additional scalar g would give sufficient scope
to control mean squared error. Thus we suggest a Bayesian-shrinkage family of estimators as

~ 9.\’
0oy =05 |9+ W (75] : (3.1)

where p and ¢ are real numbers such that p #0 and 0<g <o, W is a stochastic variable
which may in particular be a scalar to be chosen such that the mean squared error (MSE) of

6 p.q) is minimum and @, is a Bayes estimate to be determined as discussed in the previous

section.

Assuming ¥ as a scalar, the MSE of 8, ,, is obtained as
Win2? 2P0 T(n-2p) 20gA —1Wn?A?* T(n- p)

o) | ()

MSE(,  )=07 (g -1) +
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where 1 =80, /6. Minimizing with respect to  and replacing 8 by 5&' , gives

W=‘[‘193"7‘] x’

; (np)
ep?l
B

__T-p)
") = n? F(n—Zp)
functions exist, i.e., p <(n/2). Now, substituting # in (3.1) yields a class of shrinkage
estimators for 8 1in a more feasible form as

where W lies between 0 and 1, ie,, 0<W, ,) <l provided gamma

~

0(!’4) =X FV(",P) +q 93 (1 - pV(n,p)) (3-2)

Clearly, this is the convex combination of X and g 6, hence é( oq) IS always
positive. If W, ,,= 1, the proposed class of shrinkage estimators in (3.2) turns into the

uniformly minimum variance unbiased estimator (UMVUE) 67U , otherwise it is biased, the
absolute relative bias of which is given by

ARB {é(P.q) }= I {q’l - 1}(1 ~Wia,p) )‘ :

The condition for nubiasedness of 8 that #, ,,= 1, holds if and only if, sample

(r.9)
size n is indefinitely large, i.e., n & . Moreover, if the proposed class of estimators é( .4)

turns into 5(/ then this case does not deal with the use of prior information. The ARB of
é( p.q) 1S zero when g = X' (or 2 =¢7"). This is a more realistic condition for unbiasedness

without damaging the basic shrinkage type structure of ,, .. The MSE of ,,,,, is derived

as

(p.q)°

2
MSE (é(p,q))‘: 07 (g2 -1)* (1 ~Winp) )2 + Yo
n

It is obvious that the MSE of é(p 4) 1S minimum when ¢ = A (or A=q7"). The
percent relative efficiency (PRE) of é( p.q) With respect to §M is given by the formula:

PRE {é(p.q)’gM}

n

=1 - 3 > * X 100
ln(gA -1 -W,, )} + W2, [(n+1D)

The proposed class of shrinkage estimators é( p.q) has smaller MSE than that of-
(i) UMVUE 8, if-
(I—J—C_})q“ <A < (1+J5)q"
or equivalently, (1+«/5)_1 gly,< 0 < (1-J5)" q 6.
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Since the experimenter has confidence that 8 €(6,,8,), a more realistic condition

may be (6, @;[(HJET‘ g0, 1-VG)' ¢ 03]

1-W¢
where G=——e)
n (1 ~Wa.p) )Z
(ii) MMSE estimator 8, if-

(-VH)g" < 4 < [1+VH)q (3.3)
or equivalently, (1+\f}7 )—[ gl< 8 < (I—N/E)_l q 0,
orinpraétical situation @, 8,)c [(14-«/?{—)—1 q 0. (1—«/—1?)_1 q 03]

where H=0-w,,)] [+ - W ™ !

The convex nature of the proposed statistic é( .y and the condition of existence of
gamma functions contained in W, ,, provide the criterion of selecting the scalar p.
Therefore, the acceptable range of value of p is given by

Pl 0<W, ,, <1 and p<(n/2)},V n.

The range of dominance of 4 in (3.3) provides the criterion of selecting the scalar g.
Therefore the acceptable range of value of g is given by

{q | (l—xfﬁ)l" <q < (1+«/E)l“}

The quantity A in the above expression represents the average departure of the natural origin
@ from the true value 4. But in practical situations it is hardly possible to get an idea about
A . Owing to this, an unbiased estimator of A is proposed, namely

i:‘("'l)-‘gi.
n X

Therefore replacing 4 by 1, the experimenter may choose q as

{q1-vE)I' < g < (+VH) I}, (3.4)

It is pointed out that at g = A", the proposed family of estimators é( p.g) 1S 1Ot only

unbiased but renders maximum gain in efficiency. This is a remarkable property of the
proposed family of estimators. Thus in order to obtain significant gain in efficiency as well as
proportionately small magnitude of bias for fixed 4, one should choose ¢ in the vicinity of

g = A"\, 1t is interesting to note that if one selects smaller values of g then higher values of
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A leads to a large gain in efficiency (along with appreciable smaller magnitude of bias) and
vice-versa. This is legitimate for all values of p.

4. PERFORMANCE OF THE SUGGESTED FAMILY OF ESTIMATORS

So far we have dealt with the theoretical results. This section endowed with some
numerical illustrations regarding the performance of the suggested family of Bayesian-

shrinkage estimators. The ranges of ¢ and A in which the proposed estimator é( p.q) 1S Detter

(in the sense of efficiency) than the MMSE estimator 9~M have been reckoned and are

displayed in Table 4.1. It has been observed that the range of g (or A) shrinks down as the
value of A (or ¢) increases. In other words, if the crude Bayes estimate moves far from the
true value, the length of the effective interval of g decreases. In fact, there is enough scope of
choosing ¢ to get better estimators in the class. Alternatively we can say that the range of 4 is
wider for ¢ tending to zero and it abates for larger values of g.

Table 4.1 — Effective Range of Dominance of q (or A)
For p =-1 and Different Values of A (or q).

Values of A Range of ¢ Valuesof 1 | Range ofgq Values of A Range of ¢
(or 9) (or A) (orq) (or 1) (or q) (or A)
0.05 (0,40.0) 1.50 (0,1.33) 3.25 (0,0.61)
0.10 (0,20.0) 1.75 (0,1.14) 3.50 (0,0.57)
0.25 (0,8.00) . 2.00 (0,1.00) 3.75 (0,0.52)
0.50 (0,4.00) 2.25 (0, 0.88) 4.00 (0,0.50)
0.75 (0 ) 2.66) 2.50 (0,0.80) 6.00 (0,033)
1.00 (0,2.00) 2.75 (0,0.72) 8.00 (0,0.25)
1.25 (0,1.60) 3.00 (0,0.66) 10.0 (0,0.20)

To illustrate the performance of the suggested class of estimators é( p.q) Over MMSE

estimator, PREs have been computed for several combinations of scalars involved in é( 2.4)
and some of the findings are presented through Exhibits 4.1 and 4.2.

For fixed n, p and ¢, the gain in efficiency of é( pq) Teladve to MMSE estimator §M

increases up to A = ¢ attains its maximum at this point and then decreases symmetrically in
magnitude as A increases in its range of dominance. Moreover, for fixed g and 4, the percent
relative efficiency decreases as the sample size n increases. While comparing the two

exhibits, the length of effective interval of A is wider in case of é(-l,o 25) as compared to

6(1,0.25)- However, the gain in efficiency is more in case of 9(1,0_25) as compared to é(—l,o.zs)-
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Exhibit 4.1. PREs of the proposed estimator with respect to

MMSE estimator for n = 5(3)30, (p, @/=(-1, 0.25)

1 T T i g T 3 T g T T v i I 1
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Exhibit 4.2. PREs of the proposed estimator with respect to
'MMSE estimator for n = 5(3)30, (p, @)=(1, 0.25)
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5. AN APPLICATIVE EXAMPLE AND THE SUGGESTED FAMILY OF
ESTIMATORS

To emphasize the application of the suggested class of shrunken estimators é( p.q) &0

example of life-testing experiment is considered from Jani (1991). Ten electronic tubes were
put to test and the test continued till of them failed. The failure times (in hours) were recorded
as 273, 307, 344, 376, 415, 455, 502, 558, 619 and 681. Assuming that the sample has come
from an exponential population defined by (1.1). Our interest is to estimate the mean life of
the item. A prior point estimate of mean life § is available from some similar study in the
past as 450 hours and the experimenter is confident that the mean life 8 does not fall outside
the interval ( 410, 520).

Here it is given that n = 10, 8, =410, §, =450 and 6, = 520. It is simple to calculate
0~U=f= 453.00 and 9~M= 411.81. For an illustration, we have chosen p =2 for which
W) = 0.42, although other choices of p may be possible. In order to obtain the Bayes
estimate, it is relevant to calculate 7, = 0.0024, n, = 0.0022, r, =0.0019, 8, =465> 6,
thus &, =2.40 and &, = 3.60, u = 2.20008 x 10°, @ = 317065.12, B = 697.5686, n, =
2.20018 x 10, and finally, 8, =454.51.

Table 5.1. ~Impact of values of g on PRE

q—)
Ad
03300] 3846 41.63 4519 4922 5379 35899 6495 7180 79.73 8895 99.73
0.4385| 4474 5012 5649 64.09 7325 8437 9801 11490 136.00 162.51 195.92
0.5470| 352.62 61.36 7233 86.31 10439 128.08 139.52 20146 236.93 32743 408.23
0.6555| 62.68 7659 9529 120.98 156.89 207.59 278.11 369.05 463.18 514.46 484.51
0.7640 | 7572 97.75 129.72 177.17 247.84 347.08 458.07 51530 464.29 334.28 2533{
0.8725| 9297 12793 182.78 268.83 390.21 500.04 49232 37640 257.96 175.73 12347
0.9810| 116.19 171.89 264.57 401.13 510.87 460.18 318.48 205.85 13648 94.81 68.87
1.0895 | 147.99 236.25 379.51 509.23 450.64 294.04 181.51 117.04 79.96 5749 43.09
1.1980 | 192.03 326.58 490.94 469.03 298.73 17595 10942 7291 5151 38.13 29.27
13065 | 252.68 433.79 503.67 333.56 187.16 110.86 71.28 49.09 3565 2699 21.10
1.4150{ 332.50 509.53 403.13 219.23 121.87 7456 49.55 3507 2604 2005 15.90
1.5235| 424.19 491.64 283.90 146.57 83.79 53.03 3624 2622 1980 1546 12.40
1.6320| 498.19 396.90 195.66 10224 60.49 3943 27.57 2030 1555 1228  9.93
1.7405| 511.00 29248 138.01 7442 4547 3038 21.65 1617 1252 998 8.3
1.8490 | 453.20 211.29 100.73 5621 3531 2408 1742 13.17 1029 826  6.78
1.9575] 362.84 154.79 76.01 4378 28.15 19.54 1432 1093 861 696 573
2.0660 | 27736 11625 359.06 3498 2294 1615 1197 921 731 593 491
2.1745| 21032 89.62 4705 28.54 19.04 1357 1015 787 628 5.2 426
2.2830] 161.19 70.78 3828 2371 1605 1156 871 6.80 545 446  3.72
23915| 12574 57.10 3171 1999 1370 996 756 593 477 393 3.8
2.5000| 99.98 4693 2667 -17.08 11.83 867 6.62 522 422 348 292

0.5867 0.6894 0.7921 0.8948 09975 1.1002 1.2029 1.3056 1.4083 1.5110 1.6137

The possible range of g has been calculated as (0.5867, 1.6136) by virtue of

expression (3.4) wherein A=10.9089. Many choices of g in the range (0.5867, 1.6136) may be
possible depending upon the level of risk the experimenter wants to take. If there are enough
reasons to believe that 85 underestimates & then higher values of g should be chosen. As the
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degree of underestimation increases, ¢ —1.6136 ensures larger gain in efficiency. On the
other hand, if 5 overestimates € then smaller values of g should be chosen. As the degree
of overestimation increases, g —0.5867 ensures larger gain in efficiency. If the experimenter
1s not having any idea of underestimation or overestimation but he is confident that the

degree of underestimation/overestimation is moderate then middle values of g should be
chosen in the interval of g, see Table 5.1.

In the present case, let us suppose that the experimenter has no idea about the estimate
6 and he thus chosen g = 1.05 (say), the resulting Bayesian-shrinkage estimate is then given

by 63(2,1.05) = 467.06. Range of A and # in which 63(2,1_05) is better than 8, in terms of

efficiency are (0.5079, 1.3968) and (32538, 894.85) respectively.  Clearly,
(6,,6,) =(325.38, 894.85) and hence the proposed estimator 9‘(2,,.05) is always more

efficient than g, .

6. ESTIMATION WITH CENSORED SAMPLES

Hitherto we have assumed that we have a complete sample where the failure times of
all the n items are recorded. For the case in which the failure-censored sample is available,
the results follow from the preceding ones as much of the theory and derivation remains the

same. Gamma(a-&-in +(n-r)x,, p +r) posterior would work for ‘a crude Bayes
=l

. estimator of 8. A class of Bayesian-shrinkage estimators for mean life 8 is then obtained by

merely replacing x by (S,/r) and n by r in the family of estimators suggested in

Section 3. :

7. CONCLUDING REMARKS

The proposed family of estimators seems to be an intelligent use of point guessed
value and guessed interval simultaneously. Graphs and numerical computations indicate that
the proposed family of estimators substantially improves the UMVUE and it is better than the
MMSE estimator even if the Bayes estimate of the scale parameter is far from the true value
of the parameter. The family of estimators is effectively applicable when the sample size is
small, as it i1s usually in the case of exponential distribution. If censored samples are
considered the properties based on complete sample size n of the proposed class of estimators
holds true for censored sample size r also no matter what is the value of 7.
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