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Estimation Of Exponential Mean Life In Complete And
Failure Censored Samples With Prior Information

*Sharad Saxena

ABSTR<\CT

A family of estimators for exponential mean life is proposed when a guessed value
and a guessed interval ofmean life are available in addition to sample information. Shrinkage
framework has been used to improve the uniformly minimum variance unbiased estimator
(tJ'MVUE). Conjugate gamma prior is considered to derive a Bayes estimator and this
estimate has been employedin shrinkageestiIIiation to resolve the choice of the natural origin
towards which the li"MVUE to be shrunken. The suggested family of estimators has been
compared with the classical estimators in terms of percent relative efficiency. Subsequently,
applicabilityofthe proposed familyof estimators.has been tested by a life-testing example.

Key Words & Phrases: Exponential distribution, Prior information, Shrinkage estimation,
BayesianEstimation, Bias, Mean squarederror.

1. INTRODUCTION

The exponential distribution is a very commonly used distribution in reliability
engineering. Due to its simplicity, it has been widely employed even in ~ases to which it does
not apply. Exponential distribution plays an important part in life testing problems too. For 'a
situation where the failure rate appears to be more or less constant, the exponential
distribution would be an adequate choice. Davis (1952) examined different types of data' and
the exponential distribution appears to fit most of the situations quite well. The probability
density function ofone-parameter exponential distribution is given by:

f (x; e) = ~ exp(-ex) ; x ~ 0, e > °,
where e is the average life of the item and it acts as a scale parameter.

(1.1)

Suppose n items are subjected to test and the test is terminated after all the items have
failed. The samples thus obtained are called 'failure-complete' samples. However, there are
several situations where this is neither possible nor desirable. Note thar life-testing
experiments are usually destructive in nature that the items are destroyed at the end of the
experiment and cannot be used again. This limits the number of items we can test. We may
put n items on test and terminate the experiment when a pre-assigned number of items, say r
« n) have failed. The samples obtained from such an experiment are called 'failure-censored'
samples. Failure-censored. sampling is almost mandatory in dealing with high cost
sophisticated items such as colour television tubes. In this case the data consist of the life
times of r items that failed (say x(1) < x(2) < .,.< x(r» and the fact that (n - r) items have

survived beyond x(r) • Here, the number of items that failed, r, is fixed while X(r) , the time at
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which the experiment is terminated, is a random variable. The classical estimators of () m
complete and censored sampling are summarized in Table 1.1 with their characteristics.

Table 1.1. Classical Estimators ofMean Life e

Mean Squared Error
Absolute Relative

Bias

Var\Ou }=(()2jn)
ARB(BM)= 1/(n + 1) MSE(BM)= ():! j(n + 1)

Estimator

()u=x

1f~( = nx/(n + 1)MMSE

Unbiased

Type of
Estimator

Type of
Sample

Complete ------=----------=---------~..:.......:....---.:.___:_----:..-

Bu = (Sr/r) Var(Bu) = (02/r)

~~ = [S)(r +1)] ARB(BM ) =1/(r +1) MSE(~~f) = 0 2 j(r + 1)MMSE

Unbiased
Censored ~ _

It is apparent that the above estimators take into account the sample information
alone. However, Davis and Arnold (1970) have shown that, in terms of squared error risk, the
usual unbiased estimator should not necessarily be considered. They have exhibited that one
can improve upon the unique best mean squared error estimator. It is normally believed that
due to considerable handling of life-times of an item in the past, one may have some prior
information about the scale parameter () in the form of either a point value, an interval or in
the form ofa prior distribution.

Bayesian and Shrinkage estimation techniques are the well-known estimation
procedures that use prior information. Kotz et. al. (1988) defined shrinka$e (shrunken)
estimator as an estimator obtained through modification of the usual (maximum likelihood,
minimum variance unbiased, least squares etc.) estimator in order to optimize some desirable
criterion function like mean squared error (MSE), quadratic risk, bias etc. If ()o is an

educated guess or an initial estimate of the value of the parameter () then in such cases it may

be reasonable to take the usual estimator for (), say ()u, and move it closer to (or shrink it

toward) this so-called natural origin 00. by multiplying the difference (Bu - ( 0 ) by a

shrinking factor k and adding it to ()o, i.e.,

(cf., Thompson (1968 a)

The resulting estimator, though perhaps biased, has a smaller MSE than ()u for () in

some interval around ()o (the so-called effective interval). Sometimes instead of guessing the

value ()o of 0 it may be more reasonable to shrink towards an interval, i.e., guess an interval

(01'()2) that we believe contains (); cf. Lemmer (1981) and Thompson (1968 b). A lot many

shrinkage estimators have been reported by various authors including Pandey and Singh
(1983), Pandey and Srivastava (1985), Jani (1991), Singh et. aI. (1993), Singh and
Raghuvanshi (1996), Upadhyaya et. al. (1997), Singh et. aI. (2001) and Singh and Saxena
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(2001) for exponential mean life. In all the shrinkage estimators suggested so far, the usual

estimator Bu is shrunken towards a guessed value 00 or an interval (O( ,02 ) ,

This paper considers a situation where life tester possesses prior information in the
form of a guessed value and a guessed interval both. The situation dealt 'with the case when
life tester does not have much confidence to express his belief just by one value as a prior
estimate of the parameter i.e., the point guessed value, however he is in a position to express
his belief strongly in the form of a certain range i.e., the guessed interval. Apparently it is
assumed that the point guessed value falls within the guessed interval, i.e., 01 < 00 <°2 , It is

obvious to question that what will be the natural origin if guessed value and guessed interval
both to be incorporated in the shrinkage estimation procedure? Can we really shrink
simultaneously towards a point and an interval? An appropriate approach may be to shrink

towards a point, say °B , in which the knowledge available in the form of°0 , 01 and 0z must
\

be integrated. This problem can be solved in Bayesian framework.

2. BAYESIA1~ APPROACH TO DETERl\'llNE THE NATURALORIG~

Consider the model (1.1) as

f(x 11])= 1] exp(-1]x) ; x ~ 0, 1] > 0

where 1]= (1/ 0), The standard argument given by Raifa and Schlaifer (1961) leads to select
a conjugate prior

a /11] P-I expt- an)
g(n)= '/ . a > 0 P> 0, 0 < n< 00'/ . r(p)·." '/

which is a Gamma (a, P) distribution with mean and variance given by

£(1])= (Pia) =p (say) and Var(1]) = (PIaZ )=(pia) respectively. Under the assumption of

prior density g(1]), the posterior distribution of 1] can be obtained 'by using the Baye's. ,
theorem as

• 1 ( n J/1+n .. { ( n ]}g (77lx)= (p ') a+~Xj" . TJP~n-1 exp -1] a+,~xi' ; a>O,p>O, 0<1]<00
r +n 1=\ 1=1

which is a Gamma(a + Ixj , P+ n) distribution involves two hyperparameters to be

assessed namely, a and p, A very crudepossible way of selecting these parameters involves:
let, 77 j = (1/0j ) ; j =.0;1, 2. The value of p and a can be obtained by simultaneously solving

the two equations:

and ; if
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or ; if

where ~\ =6(7]1 -7]0) and ~2 =6(1]0 -7]2) are the weights based on the area property of
1]\ - 7]2 1]\ - 172

the standard normal distribution, Bmid = (B\ + B2 )/2. Once one gets the values ofz, and a, it

is trivial to calculate /3. Thus, the numerical value of posterior mean of 1] is given by

1]8 = f3 + n and finally, a Bayesian estimate of B is given by ()B=(1/7]B)' In the next
a+Ix j

section, this Bayes estimate has been used as a natural origin towards which the UMVUE has
been shrunken by optimizing the mean squared error.

3. SHRINKAGE ESTIMATION 'WIflB[ COMlPJLJEllE SAl'1rlPJLlES

Jani (1991) suggested a class of shrinkage estimators when a prior point estimate Bo
of B is available viz.,

Motivated by Jani (1991) we evoked a family of estimators B(p,q) for () defined in

(3.1). The idea behind this type of estimator is that one's knowledge of () can best be
expressed by mean of a prior distribution of B around the values ()0' B1 and B2 rather than a

one-point distribution in ()o. Furthermore, an additional scalar q would give sufficient scope

to control mean squared error. Thus we suggest a Bayesian-shrinkage family ofestimators as

(3.1)

where p and q are real numbers such that p;#; 0 and 0 < q < 00, W is a stochastic variable
which may in particular be a scalar to be chosen such that the mean squared error (MSE) of
,...,
(}(p,q) is minimum and BB is a Bayes estimate to be determined as discussed in the previous

section.

,...,

Assuming Was a scalar, the MSE of (}(p,q) is obtained as

(-) 2[ 2 W 2n 2Pl2(p+\)r(n-2p) 2(ql -1)wn Pl(p+\)r(n- p)]
MSE\Bp,q =B (ql-l) + r(n) + r(n)
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where A. = (J8/(J . Minimizing with respect to Wand replacing (J by eu ' gives

W= -[q(Ja -xl xP w.
(Jp+1 (n,p)

8

39

_ r(n- p)
where W(n,p) - ( ) lies between 0 and 1, i.e., 0 < W(n,p) s 1 provided gamma

nprn-2p

functions exist, i.e., p«n/2). Now, substituting W in (3.1) yields a class of shrinkage

estimators for (J in a more feasible form as

(3.2)

Clearly, this is the convex combination of x and q (J8' hence (J(p,q) is always

positive. If W(n,p)= 1, the proposed class of shrinkage estimators in (3.2) turns into the

-uniformly minimum variance unbiased estimator (UMVUE) (Ju, otherwise it is biased, the

absolute relative bias ofwhich is given by

ARB ~(P,q)}= I{qA. -I}(I- W(n,p) )1·

The condition for uobiasedness of B(p,q) that W(n.p) = 1, holds ifand only if, sample

size n is indefinitely large, i.e., n ~ 00. Moreover, if the proposed class of estimators (J(p,q)

-turns into (Ju then this case does not deal with the use of prior information. The ARB of

B(p,q) is zero when q = A.-I (or A. = q-I). This is a more realistic condition for unbiasedness
~ ~

without damagin~ the basic shrinkage type structure of (J(p,q)' The MSE of (J(p,q) is derived

as

It is obvious that the MSE of «; is minimum when q = A.-I (or A. = q-I). The

percent relative efficiency (PRE) ofB(p,q) with respect to ifM is given by the formula:

PRE~(p.q).9M 1=1 2 n 2 2 1 x 100n(qA. -1) (1- WCn,p» + WCn,p)(n + 1)

The proposed class ofshrinkage estimators BCp,q) has smaller MSE than that of-

-(i) UMVUE (Ju, if-

or equivalently,

(I-.JG)q-1 < A. < (I+.JG)q-1
(I+.JGt l

q (Js < (J < (I-JGtl
q (J8'
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Since the experimenter has confidence that BE (B1 ' B2 ), a more realistic condition

maybe (BI , Bz)c [(I+.JGt q Bs, (1-.JGt q BjJ ]

G = 1- W(~,p) .

n(1- W(n,p) ~

(ii) l\1MSE estimator BM , if-

(1-v'H)q-1 < A < (1+v'H)q-1 (3.3)

or equivalently,

or in practicalsituation

where H =(1- W(n,p) )2 [(n + 1)-I - W(;,p)n -I ].

. The convex nature of ~e proposed statistic B(p,q) and the condition of existence of

gamma functions contained,_ in W(n,p) provide the criterion of selecting the scalar p.

Therefore, the acceptable rangeofvalue of p is givenby

Lv I 0 < W(n,p) <1 and p < (n/2)},V' n.

The range of dominance of A. in (3.3) provides the criterion of selecting the scalar q.
Therefore-the acceptable rangeofvalueof q is givenby

The quantity A in the above expression represents the average departure of the natural origin
Bs from the true value B. But in practical situations it is hardlypossible to get an idea about
A. Owingto this, an unbiased estimatorof A is proposed, namely

,i,-("~lY: .
Therefore replacing Aby i, the experimenter may chooseq as

{ql(l-m)i-l < q < (l+m)kl
} . (3.4)

It is pointed out that at q = A-I, the proposed familyof estimators B(p,q) is not only

unbiased but renders maximum gain in efficiency. This is a remarkable property of the
proposedfamilyof estimators. Thus in order to obtain significant gain in efficiencyas well as
proportionately small magnitude of bias for fixed A, one should choose q in the vicinity of

q = A-I. It is interesting to note that ifone selects smaller values of q then higher values of



The Philippine Statistician, 2004 41

A. leads to a large gain in efficiency (along with appreciable smaller magnitude of bias) and
vice-versa. This is legitimate for all values of p.

4. PERFORMANCE OF THE SUGGESTED FAJ.'\1ILY OF ESTIMAtORS

So far we have dealt with the theoretical results. This section endowed with some
numerical illustrations regarding the performance of the suggested family of Bayesian-

shrinkage estimators. The ranges of q and A. in which the proposed estimator B(p,q) is better

(in the sense of efficiency) than the MMSE estimator BM have been reckoned and are

displayed in Table 4.1. It has been observed that the range of lJ (or A.) shrinks down as the
value of A. (or q) increases. In other words, if the crude Bayes estimate moves far from the
true value, the length of the effective interval ofq decreases. In fact, there is enough scope of
choosing q to get better estimators in the class. Alternatively we can say that the range of;. is
wider for q tending to zero and it abates for larger values ofq.

Table 4.1- Effective Range of Dominance of q (or A.)
For p =-1 and Different Values of A. (or q).

Values of A. Range ofq
(or q) (or A.)

0.05 (0,40.0 )
0.10 (0,20.0 )
0.25 (0,8.00 )
0.50 (0,4.00 )
0.75 (0,).66 )
1.00 (0; 2.00)
1.25 (0,1.60)

Values of A. Range ofq
(orq) (or ,t)

1.50 (0,1.33)
1.75 (0,1.14 )
2.00 (0,1.00)
2.25 (0,0" 88)
2.50 (0,0.80 )
2.75 (0,0.72 )
3.00 (0,0.66 )

Values of A. Rangeofq
(or q) (or ,t)

3.25 ( 0 , 0.61 )
3.50 (0,0.57)
3.75 (0,0.52 )
4.00 (0,0.50)
6.00 (0,0.33 )
8.00 (0,0.25 )
10.0 (0,0.20 )

To illustrate the performance of the suggested class of estimators B(p,q) over ~ISE

estimator, PREs have been computed for several combinations of scalars involved in B(p.q)

and 'some ofthe findings are presented through Exhibits 4.1 and 4.2.

For fixed n, p and q, the gain in efficiency of 8(p,q) relative to MMSE estimator 8,I,[
increases up to A. = q-l attains its maximum at this point and then decreases symmetrically in

magnitude as A. increases in its range of dominance. Moreover, for fixed q and A., the percent
relative efficiency decreases as the sample size n increases. While comparing the two

exhibits, the length of effective interval of A. is wider in case of 8(-1,0.15) as compared to

8(1,0.25)' However, the gain in efficiency is more in case of 8(1,0.25) as compared to 8(-1,0.25)'
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lExhibit 4.1. PREs of the proposed estimator with respect to
MMSE estimator for n = 5(5)30, (P, q)=(-l, 0.25)
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Exhibit 4.2. PREs of the proposed estimator with respect to
.MMSE estimator for n = 5(5)30, (p, q)=(l, 0.25)
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5. AN APPLICATIVE EXAi"IPLE AND THE SUGGESTED FMULY OF
ESTIMATORS
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To emphasize the application of the suggested class of shrunken estimators B(p,q) an

example of life-testing experiment is considered from Jani (1991), Ten electronic tubes were
put to test and the test continued till of them failed. The failure times (in hours) were recorded
as 273; 307, 344, 376, 415, 455, 502, 558,619 and 681. Assuming that the sample has come
from an exponential population defined by (1.1). Our interest is to estimate the mean life of
the item. A prior point estimate of mean life () is available from some similar study in the
past as 450 hours and the experimenter is confident that the mean life () does not fall outside
the interval ( 410,520).

Here it is given that n = 10, (}1 =410, (}o =450 and (}2 = 520. It is simple to calculate
- -(}u=x= 453.00 and (}M= 411.81. For an illustration, we .have chosen p =·2 for which

W(n,p) = 0.42, although other choices of p may be possible. In order to obtain the Bayes

estimate, it is relevant to calculate Tit = 0.0024, 710 = 0.0022, 717. = 0.0019, ()mid = 465 > (}o'

thus ;1 = 2.40 and ;2 = 3.60, J.L = 2.20008 x 10-3, a = 317065.12, f3 = 69j.5686, 71 B =

2.20018 x 10'3, and finally, (}B= 454.51.

Table 5.1. -Impact of values ofq on PRE

q~
0.5867 0.6894 0.7921 0.8948 0.9975 1.1002 1.2029 1.3056 1.4083 1.5110 1.613/

A.,J..
0.3300 38.46 41.63 45.19 49.22 53.79 58.99 64.95 71.80 79.73 88.95 99.73
0.4385 44.74 50.12 56.49 64.09 73.25 84.37 98.01 114.90 136.00 162.51 195.92
0.5470 52.62 61.36 72.33 86.31 104.39 128.08 159.52 201.46 256.93 327.43 408.23
0.6555 62.68 76.59 95.29 120.98 156.89 207.59 278.11 369.05 463.18 514.46 484.51
0.7640 75.72 97.75 129.72 177.17 247.84 347.08 458.07 515.30 464.29 354.28 253.36
0.8725 92.97 127.93 182.78 268.83 390.21 500.04 492.32 376.40 257.96 175.73 123.47
0.9810 116.19 171.89 264.57 401.13 510.87 460.18 318.48 205.85 136.48 94.81 68.87
1.0895 147.99 236.25 379.51 509.23 450.64 294.04 181.51 117.04 79.96 57.49 43.09

1.1980 192.03 326.58 490.94 469.03 298.73 175.95 109.42 72.91 51.51 38.13 29.27

1.3065 252.68 433.79 503.67 333.56 187.16 110.86 71.28 49.09 35.65 26.99 21.10

1.4150 332.50 509.53 403.13 219.23 121.87 74.56 49.55 35.07 26.04 20.05 15.90
1.5235 424.19 491.64 283.90 146.57 83.79 53.03 36.24 26.22 19.80 15.46 12.40

1.6320 498.19 396.90 195.66 102.24 60.49 39.43 27.57 20.30 15.55 12.28 9.93

1.7405 511.00 292.48 138.01 74.42 45.47 30.38 21.65 16.17 12.52 9.98 8.13
1.8490 453.20 211.29 100.73 56.21 35.31 24.08 17.42 13.17 10.29 8.26 6.78
1.9575 362.84 154.79 76.01 43.78 28.15 19.54 14.32 10.93 8.61 6.96 5.73

2.0660 277.36 116.25 59.06 34.98 22.94 16.15 11.97 9.21 7.31 5.93 4.91

2.1745 210.32 89.62 47.05 28.54 19.04 13.57 10.15 7.87 6.28 5.12 4.26

2.2830 161.19 70.78 38.28 23.71 16.05 11.56 8.71 6.80 5.45 4.46 3.72

2.3915 125.74 57.10 31.71 19.99 13.70 9.96 7.56 5.93 4.77 3.93 3.28
2.5000 99.98 46.93 26.67 . 17.08 11.83 8.67 6.62 5.22 4.22 3.48 2.92

The possible range of q has been calculated as (0.5867, 1.6136) by virtue of

expression (3.4) wherein i = 0.9089. Many choices ofq in the range (0.5867, 1.6136) may be
possible depending upon the level of risk the experimenter wants to take. If there are enough
reasons to believe that ()B underestimates () then higher values ofq should be chosen. As the
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degree of underestimation increases, q~ 1.6136 ensures larger gain in efficiency. On the

other hand, if 0B overestimates 0 then smaller values of q should be chosen. As the degree

of overestimation increases, q~ 0.5867 ensures larger gain in efficiency. If the experimenter

is not having any idea of underestimation or overestimation but he is confident that the
degree of underestimation/overestimation is moderate then middle values of q should be
chosen in the interval ofq, see Table 5.1.

In the present case, let us suppose that the experimenter has no idea about the estimate

oB and he thus chosen q = 1.05 (say), the resulting Bayesian-shrinkage estimate is then given

by 8(2,1.05) = 467.06. Range of A. and 0 in which 8(2,1.05) is better than 8M in terms of

efficiency are (0.5079, 1.3968) and (325.38, 894.85) respectively. Clearly,

(O[ ,02 ) c (325.38, 894.85) and hence the proposed estimator 8(2,1.05) is always more

-efficient than 0M .

6. ESTIMATION WITH CENSORED SAMPLES

Hitherto we have assumed that we have a complete sample where the failure times of
all the n items are recorded- For the case in which the failure-censored sample is available,
the results follow from the preceding ones as much of the theory and derivation remains the

same. Gamma( a + t.Xi +(n - r)x" p+r) posterior would w~rk fora crude Bayes

. estimator of O. A class of Bayesian-shrinkage estimators for mean life 0 is then obtained by

merely replacing x by (Sr/r) and n by r in the family of estimators suggested in

Section 3.

7. CONCLUDING REMARKS

The proposed family of estimators seems to be an intelligent use of point guessed
value and guessed interval simultaneously. Graphs and numerical computations indicate that
the proposed family of estimators substantially improves the UMVUE and it is better than the
.MMSE estimator even if the Bayes estimate of the scale parameter is far from the true value
of the parameter. The family of estimators is effectively applicable when the sample size is
small, as it is usually in the case of exponential distribution.. If censored samples are
considered the properties based on complete sample size n ofthe proposed class of estimators
holds true for censored sample size r also no matter what is the value of n.
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